Kinodynamic Motion Planning for High - dimensional Physical Systems
نویسنده
چکیده
Kinodynamic Motion Planning for High-dimensional Physical Systems by Ioan Alexandru Şucan This thesis presents a kinodynamic motion planner, Kinodynamic Motion Planning by Interior-Exterior Cell Exploration (KPIECE), specifically designed for systems with complex dynamics, where physics-based simulation is necessary. A multiplelevel grid-based discretization is used to estimate the coverage of the state space. The coverage estimates help the planner detect the less explored areas of the state space. The planner also keeps track of the boundary of the explored region of the state space and focuses exploration on the less covered parts of this boundary. Extensive experiments show KPIECE provides computational gain over state-of-the-art methods and allows solving some harder, previously unsolvable problems. A shared memory parallel implementation is presented as well. This implementation provides better speedup than an embarrassingly parallel implementation by taking advantage of the evolving multi-core technology.
منابع مشابه
AA290: Precomputed Lattices and Paths for Robotic Motion Planning Using Fast Marching Trees
Robotic motion planning problems often require solutions in real-time, however with kinodynamic planning or problems with uncertainties in the environment, this may be very difficult if not impossible with an all on-line algorithm. By precomputing information or formatting the configuration space in specific ways, it may be possible to plan the remaining necessary information on-line, even for ...
متن کاملAsymptotically optimal sampling-based kinodynamic planning
Sampling-based algorithms are viewed as practical solutions for high-dimensional motion planning. Recent progress has taken advantage of random geometric graph theory to show how asymptotic optimality can also be achieved with these methods. Achieving this desirable property for systems with dynamics requires solving a two-point boundary value problem (BVP) in the state space of the underlying ...
متن کاملAdmissible velocity propagation: Beyond quasi-static path planning for high-dimensional robots
Path-velocity decomposition is an intuitive yet powerful approach to address the complexity of kinodynamic motion planning. The difficult trajectory planning problem is solved in two separate and simpler steps : first, find a path in the configuration space that satisfies the geometric constraints (path planning), and second, find a time-parameterization of that path satisfying the kinodynamic ...
متن کاملNonholonomic motion planning for car-like robots
We consider the robot motion planning problem in the presence of non-integrable kinematic constraints, known as non-holonomic constraints. Car-like non-holonomic mobile robots are used for solving this problem, and several implemented planners are discussed. We claim that the randomized methods are more capable of efficiently solving many challenging, high-dimensional problems. Results with ran...
متن کاملKinodynamic Motion Planning for an X4-Flyer
This chapter describes kinodynamic motion planning and its application. Kinodynamics is the discipline that tries to solve kinematic constraints and dynamical constraints simultaneously. By using kinodynamic motion planning, control inputs can be generated in a much simpler way, compared to the conventional motion planning that solves kinematics and dynamics separately. After briefly overviewin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009